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In a recently published paper [l 1 two problems dealing with the optimi- 
zation of rocket trajectories were treated by variational methods. These 
problems concern the determination of the optimum thrust program - 
magnitude and direction - resulting in minimum flight time or minimum 
fuel consumption for a rocket transferring between specified velocities 
in the horizontal and vertical planes, respectively. 

The following assumptions were made in [ 1 1 and are retained here: 

a) The rocket is a particle of variable mass, i.e. the moments of 
inertia are negligfble; 

b) The thrust direction is ideally controllable, i.e. can be changed 
instantaneously; 

c) the acceleration of gravity is constant; 

d) the aerodynamic forces are negligible; 

e) thrust is proportional to mass flow rate [ 3 1 A 

Since the conclusions reached in 11 1 are not in agreement with those 
published earlier for one of the problems (Flight in Vertical Plane), 
another analysis is presented here. The method of solution employed here 
is based on the classical Calculus of Variations f 3 1 with the inclusion 
of inequality constraints on controX variables as described in [ 4 14 

Flight in Ekfizontal Plane 

@ations of motion and statement of problem. For flight re- 
stricted to the horizontal plane Figs. 1 and 2 portray the geometry of 
the flight path and the force system, respectively. The flight path is 
described with respect to an inertial coordinate system Oxyz with Ozy in 
the horizontal plane and Oz vertical upward. 
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Fig. 1. Fig;. 2. 

Upon decomposition of forces in the tangential, normal and binormal 
directions, respectively, one has 

mV = T cos ecoscp, rnvy = T cos 8sincp, O=Tsin 8- mg (1) 

where 

T =cB, c = const, fi = - m M 

Since afl possibl.e control of the thrust direction can be effected 

with 

0 <rp < 2% -;<e<+ (3) 

one may write from (11, 

cos e = [I - (pf I”‘? 

Furthermore, to insure a real solution one must impose the constraint 

where P,,ax is prescribed. 

It is required to minimize a functional 

G .= G (TRY Vi, yi, ti, ml, Vf, yft 8,) (6) 
subject to constraints 

3 - [(cg / m)2 - g2 I’/, cos ‘p = 0 

Y - I(4 / m)” - g”]V;V-l sin ‘p = 0 (7) 
m+p=o 

hnax - 8) @ - mg/e) -+=O 

and to appropriate end conditions. Equation (71, arises from adjoining 
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inequality constraint (S), where q is a real variable [ 5 1 . If either Vi 

or Vf is zero, a limiting process described in 16 1 must be employed. 

Equations (7) contain the six dependent variables V, y; m, p, $, and 
9. Since there are four constraint equations, two variables can be varied 
freely. lhese are the control variables /3 and 4. 

First variation. Necessary conditions for the existence of an 

extremal value of G, arising from the vanishing of the first variation, 
are the Euler-Lagrange equations 

i, = 0 

A, - z$ [(p.,’ - g2]-“(h vcoscp+h,+-sincp)+ &(fimax--~j$ =0 

-~2]-“‘(hvc0srp + A,$--sincpj-Ah,+ h,(2p - smaX--F) =O 

h,q = 0 

and the transversality condition 

dG+ [hvdV+h,dy+h,dm-Cdtl$=O 

where the first integral 

C = hvV + hYY + h,,A = const 

(9) 

(10) 

Ihe A,, 2 = V, y, m, q, are undetermined multipliers. 

Corner conditions. Since the control variables p, and 6 may have 
finite discontinuities at isolated points of the interval ti < t < tf, 
the extremal arc may possess corners. At such corners the Weierstrass- 

Erdmann Corner Conditions apply. For the problem under consideration 
these are 

and 

A,_ = AZ+, 2 = V, y, m (11) 

c_ = c+ (12) 

Composition of the extremal arc. Since the control variables 
p and # may be discontinuous, there arises the question of composing the 
subarcs into the total extremal arc. 

From Equations (71, and (81, it follows that when 
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bearing out the contention that the thrust magnitude is bounded. Unfor- 
tunately, conditions (13) yield no answer to the question of choosing the 
optimum thrust regime. 

A similar dilemma arises with respect to the optimum choice of thrust 
direction angle 4, since Equation (8), is satisfied by 

mg= c~J or 
( sin ‘p = f h, [hy2 + (Vh,)‘]-’ ? 

\ CDS q=~-+l’h,- [a,2 + (r++” (14) 

To resolve these questions one must turn to a stronger condition than 
that arising from the first weak variation. 

Weierstrass B-function. For the minimum flight time problem 

G =t/ (15) 
with 

t = ti = 0, V =V/i, Y = Yiy nz = ?ni 

t = tf (unspecified), V =Ff, Y = Yp m = mj 
(16) 

so that Equations (9) and (10) yield 

C=l 

For the minimum fuel problem, or any 

time 
c=o 

(17) 

other, with unspecified flight 

(18) 

Consequently, from Equations (101 and (7) one has then 

c = [ (\$ )” - g2]‘;‘2 ( hvcoscp+ h,+siu(p) -h,,$>,O (1% 

Along a programmed intermediate thrust arc conditions (13) require 

whence Equation (8), becomes 
A, = 0 

. 
(20) 

C=-g2[($~-g2]1’2 (hycosq+ h,-+sincp) (21) 

In order that functional G have a minimum the Weierstrass E-Function 
must be non-negative. ‘Ihis condition requires that 

( hli coscp + 3LY +- sin cp )- km@ (22) 
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be maximum with respect to the control variables p and qb. 

With respect to thrust direction angle + this requirement results in 
Equation (8.4) and the choice of the + sign in Equations (14), i.e. 

hv cosv + h, +sincp = [AT2 + (Vhv)2]‘l~ -$ > 0 (23) 

In effect, only the inequality sign applies in inequality (23) lest 
all multipliers vanish, Consequently, Equation (21) contradicts inequal- 
ity (19). Thus, there can be no arc of intermediate thrust, i.e. 

%l# 0, q=O andp=x or B = Lax 

With respect to the bounded control &able p 

(24) 

t?A 
Y3jF= m2 

c”p [(3 _ By2 [A.(2 + (‘Vl4’ $ _ h”, 

and 
PA 

apz-=- 
(Z)’ [h,2 + (Vh&/’ [($>’ - gq-$‘* $ (26) 

In view of Equations (8),, (24), and (25) 

aA/@#O (27) 
Also from Equation (25) 

8A/@ +OO as cS - mg (28) 
and from Equation (26) 

awapyo (29) 
Figure 3 then shows A as a function of p at any instant of time. 

Fig. 3. 

It follows from Fig. 3 that only maximum thrust is permissible, i.e. 

B = Bmax (30) 
Furthermore, at that point 

A=C (31) 
If 

B max SW (32) 
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which is the case treated in [ 1 I , the final velocity is obtained by 
means of an impulse. 

If the flight time is specified, Equations (17) and (18) no longer 
hold. In particular, the first integral need no longer be non-negative 
and programmed intermediate thrust may be called for, Since A is not a 
linear function of @, the optimum thrust program must vary continuously 
to satisfy the maximality of A. When the maximum value of A,Equation 
(22), lies in the interval I&C < 6 < /3=,,, the optimum program is given 

by 
aA i a@ = 0 (33) 

that is, Equation (8), with Equation (20). When the value of A corre- 
sponding to Equation (33) lies to the right of j3 = @ma= in Fig. 3, then 

A, # 0, p = flmax (34) 

where X+, is given by Equation (8)5. 

Solution. For finite thrust the equations of motion and the vari- 
ational equations must be solved together to provide the optimum thrust 

direction program. 

For minis flight time and end conditions (16) one may proceed by 
assuming initial values for X+ and hk Equations (7),_, and (8),,2 
together with Equations (14) and (30) are then integrated until m= laf 
At that point the end values of V and y must be matched. If the final 
mass mf is not specified, the integration must be terminated when 

h,=Lq=.O (35) 

Ihe multiplier X, may be computed from the first integral, Equations 

(10) and (17). 

For minimum fuel consumption 

G= -:“f 
(36) 

and 
t = ti = 0, V =L vi, Y = Yi? ??z = mi 

t = ti (unspecified) v = vf, Y = Yf 
(37) 

it follows from EQuation (9) that 
h,, = 1 (38) 

‘Ihe integration is terminated when ha reaches unity. Again, X, may be 
found from the first integral, Equations (10) and (18). 

In either case a two-parameter iteration is required for the solution 
of the mixed end value problem. 
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Flight in Vktical Plane 

‘ihe problem of optimal flight in the vertical plane has been solved 
earlier [I 1, Here again it can be shown that flight at maximum thrust 
is optimum for the problems considered. 

Note. The results obtained in this paper do not agree with those of 
[ i 1 i where the solution calls for flight with programmed intermediate 
thrust. 
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